3.8.67 \(\int \frac {\sqrt {c x^2} (a+b x)^2}{x^2} \, dx\)

Optimal. Leaf size=49 \[ \frac {a^2 \sqrt {c x^2} \log (x)}{x}+2 a b \sqrt {c x^2}+\frac {1}{2} b^2 x \sqrt {c x^2} \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 49, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {15, 43} \begin {gather*} \frac {a^2 \sqrt {c x^2} \log (x)}{x}+2 a b \sqrt {c x^2}+\frac {1}{2} b^2 x \sqrt {c x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sqrt[c*x^2]*(a + b*x)^2)/x^2,x]

[Out]

2*a*b*Sqrt[c*x^2] + (b^2*x*Sqrt[c*x^2])/2 + (a^2*Sqrt[c*x^2]*Log[x])/x

Rule 15

Int[(u_.)*((a_.)*(x_)^(n_))^(m_), x_Symbol] :> Dist[(a^IntPart[m]*(a*x^n)^FracPart[m])/x^(n*FracPart[m]), Int[
u*x^(m*n), x], x] /; FreeQ[{a, m, n}, x] &&  !IntegerQ[m]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin {align*} \int \frac {\sqrt {c x^2} (a+b x)^2}{x^2} \, dx &=\frac {\sqrt {c x^2} \int \frac {(a+b x)^2}{x} \, dx}{x}\\ &=\frac {\sqrt {c x^2} \int \left (2 a b+\frac {a^2}{x}+b^2 x\right ) \, dx}{x}\\ &=2 a b \sqrt {c x^2}+\frac {1}{2} b^2 x \sqrt {c x^2}+\frac {a^2 \sqrt {c x^2} \log (x)}{x}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 33, normalized size = 0.67 \begin {gather*} \frac {c x \left (2 a^2 \log (x)+b x (4 a+b x)\right )}{2 \sqrt {c x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[c*x^2]*(a + b*x)^2)/x^2,x]

[Out]

(c*x*(b*x*(4*a + b*x) + 2*a^2*Log[x]))/(2*Sqrt[c*x^2])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.03, size = 34, normalized size = 0.69 \begin {gather*} \sqrt {c x^2} \left (\frac {a^2 \log (x)}{x}+\frac {1}{2} \left (4 a b+b^2 x\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(Sqrt[c*x^2]*(a + b*x)^2)/x^2,x]

[Out]

Sqrt[c*x^2]*((4*a*b + b^2*x)/2 + (a^2*Log[x])/x)

________________________________________________________________________________________

fricas [A]  time = 0.76, size = 32, normalized size = 0.65 \begin {gather*} \frac {{\left (b^{2} x^{2} + 4 \, a b x + 2 \, a^{2} \log \relax (x)\right )} \sqrt {c x^{2}}}{2 \, x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^2*(c*x^2)^(1/2)/x^2,x, algorithm="fricas")

[Out]

1/2*(b^2*x^2 + 4*a*b*x + 2*a^2*log(x))*sqrt(c*x^2)/x

________________________________________________________________________________________

giac [A]  time = 1.08, size = 32, normalized size = 0.65 \begin {gather*} \frac {1}{2} \, {\left (b^{2} x^{2} \mathrm {sgn}\relax (x) + 4 \, a b x \mathrm {sgn}\relax (x) + 2 \, a^{2} \log \left ({\left | x \right |}\right ) \mathrm {sgn}\relax (x)\right )} \sqrt {c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^2*(c*x^2)^(1/2)/x^2,x, algorithm="giac")

[Out]

1/2*(b^2*x^2*sgn(x) + 4*a*b*x*sgn(x) + 2*a^2*log(abs(x))*sgn(x))*sqrt(c)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 33, normalized size = 0.67 \begin {gather*} \frac {\sqrt {c \,x^{2}}\, \left (b^{2} x^{2}+2 a^{2} \ln \relax (x )+4 a b x \right )}{2 x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)^2*(c*x^2)^(1/2)/x^2,x)

[Out]

1/2*(c*x^2)^(1/2)*(b^2*x^2+2*a^2*ln(x)+4*a*b*x)/x

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^2*(c*x^2)^(1/2)/x^2,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: Error executing code in Maxima: expt: undefined: 0 to a negative e
xponent.

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {\sqrt {c\,x^2}\,{\left (a+b\,x\right )}^2}{x^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((c*x^2)^(1/2)*(a + b*x)^2)/x^2,x)

[Out]

int(((c*x^2)^(1/2)*(a + b*x)^2)/x^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {c x^{2}} \left (a + b x\right )^{2}}{x^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)**2*(c*x**2)**(1/2)/x**2,x)

[Out]

Integral(sqrt(c*x**2)*(a + b*x)**2/x**2, x)

________________________________________________________________________________________